4. Криптографические методы защиты информации


Предположим еще, что вычислительная мощь возрастает в 10 раз каждые 5 лет, а метод, который используется для разложения больших чисел на множители, позволяет это делать с трудоемкостью, указанной в табл. 6.3.
Сделанные предположения позволяют оценить длину стойкого открытого ключа в зависимости от срока, в течение которого необходимо хранить зашифрованные с его помощью данные в секрете (табл. 6.4). При этом необходимо помнить, что криптографические алгоритмы с открытым ключом часто применяются для защиты очень ценной информации на весьма долгий период времени. Например, в системах электронных платежей или при нотариальном заверении электронной подписи. Идея потратить несколько месяцев на разложение большого числа на множители может показаться кому-то очень привлекательной, если в результате он получит возможность рассчитываться за свои покупки по вашей кредитной карточке. Кроме того, я думаю, что вам совсем не улыбается перспектива быть вызванным через 20 лет на заседание суда, на котором рассматривается дело о наследстве, и отстаивать невозможность подделать электронную подпись вашего дедушки, использованную им для составления завещания в вашу пользу.
С приведенными в табл. 6.4 данными согласны далеко не все авторитетные криптографы. Некоторые из них наотрез отказываются делать какие-либо долгосрочные прогнозы, считая это бесполезным делом. Другие, например, специалисты из АНБ, чересчур оптимистичны, рекомендуя для систем цифровой подписи длину открытого ключа всего 512—1024 бита, что в свете данных из табл.



Сайт управляется системой uCoz